
Atmel’s DSPLib re-sampling algorithm (version 2) 
 

Following is a brief description of the frequency re-sampling algorithm used in the DSP 

library. It is aimed for anybody so no specifics digital signal processing knowledge is 

required to understand this presentation. 

Algorithm 

The principle is quite simple, it consists in 2 main stages, increasing the sampling rate by 

an integer value (L), this action is also called interpolation, and then reducing it by 

another integer value (M), also known as decimation. 

This process is also known as band limited interpolation. 

L and M calculation 

L and M are 2 integers that are calculated by getting the GCD (Greatest Common 

Divisor) of the input (FSin) and the output (FSout) sampling frequencies. The number 

resulting will divide Fsin and Fsout to respectively give M and L. 

 
Then the following formula can be applied: 

FSout = FSin * L / M 

Interpolation 

This process increases the frequency sampling rate of the input signal by an integer factor. 

The factor used at this stage of the process by the re-sampling algorithm will be the pre-

calculated "interpolation factor" L. Which means, if we consider this process as a black 

box with 1 input (u) and 1 output (v), the output signal sampling frequency (Fs(v)) will 

be equals to the input signal sampling frequency (Fs(u)) multiplied by L. 

 
The following describes the algorithm used to implement the interpolation. The method 

consists in two parts: 

1. Extending the signal by filling "blank spaces" with zeros, in order to obtain a 

signal with the desired sampling rate. This is called up-sampling. 

 



2. Low-pass filtering the signal to “remove zeros” introduced during the previous 

stage. 

 
 

Here is a view of the process (time domain Vs frequency domain): 

Time domain Frequency domain 

Input signal (Fs = FSin) 

  
Up-sampling with L = 3 – Fs becomes L * Fs 

 
 

Low-pass filtering (Fc = Fs/2) 

 
 

Filtering 

According to the diagram above, the filter must be a low-pass filter with a cut-off 

frequency equal to min(FSin, FSout) / 2. The frequency sample of this filter is Fs * L. 

 

How to choose the filter? 

The frequency response of the system is defined by the filter itself. Therefore this part is 

very important to ensure the best characteristics for your system. 

There are many different ways to generate FIR filter coefficients, and therefore there 

characteristics will be different from one method to the other. But it is always a trade off 

between the filter resources and its quality. The larger the filter is (defined by its order), 

the more memory and processor resources it will consume but the best quality it will have. 



Following is the frequency response of a low-pass FIR filter: 

 
Note that the cut-off frequency should be between Fc1 and Fs1. By choosing Fs1 equals 

to the cut-off frequency, you will ensure the lowest transition band aliasing but the pass 

band of the filter will be reduced. 

 

In order to estimate the right filter order to be used according to what the system requires, 

some formula exists, please refer to one of the following: 

- “ωp” and “ωc” are respectively the Fc1 and Fs1 in radian. In other word, it is equal to 2 

* π * F / Fs. 

- “δp” is the pass band ripples amplitude. 

- “δs” is the stop band attenuation. 

 

3. Kaiser’s Formula 

πωω

δδ

2/)(6.14

)(log20 10

ps

sp
N

−

−
≅  

4. Hermann-Rabiner Chan’s Formula 

πωω

πωωδδδδ

2/)(

]2/))[(,(),( 2

ps

psspsp FD
N

−

−−
≅

∞
 

where: and

]log[log),( 101021 spsp bbF δδδδ −+=  

5. Fred Harris’ Formula 

 
 

Polyphase filter 

In this algorithm to improve efficiency, the filter is used as a polyphase FIR filter. 

Polyphase filters are basically normal filters processed in different pieces. The goal here 



is to have one piece of the data with the non-zero values of the signal and the rest with 

the zeros. The result will be then the same as processing only the non-zeros samples from 

the input signal: 

 
Filter coefficients arrangement 

In order to get the most efficiency out of this method, the algorithm also re-sorts the filter 

coefficients in the following way: 

 
Filter coefficient normalization 

If enabled, the algorithm also normalizes the coefficients to ensure that the output result 

will never go above 1 in amplitude. This ensures that the value will never overflowed 

which is very useful when fixed-point format is used. 

 

Decimation (frequency down-sampling) 

This process is much simpler than the interpolation. 

It consists in removing samples in order to keep the same signal wave form but with a 

lower sampling rate. 

Therefore, to obtain the desired output sampling frequency, the signal has to be down 

sampled by M (decimation factor). 

 
Every M samples are kept from the input signal and all the others are simply removed. 

 



Conclusion 

By processing these 2 main stages, the signal is re-sampled by a factor equals to L/M. 

Therefore, the smaller the 2 frequencies have their GCD (Greatest Common Divisor), the 

more memory it will need (to store the FIR filter coefficients). 

This method is one of the most used in digital signal processing systems. It will generate 

a clean signal and evaluate at best the waveform of the output signal. 



About the API 

Filter coefficients generation methods 

The API allows the user to use two different methods to feed the internal FIR filter with 

its coefficients: 

1. The dynamic method – which uses an internal algorithm to design on-the-fly FIR 

coefficients. It is the easiest way to proceed, since the algorithm will choose by 

itself all the FIR characteristics. (Note that the user can also define some custom 

characteristics if needed, see the automated Doxygen documentation of the code 

for more information). The algorithm will then need higher requirement in RAM 

memory than the other method since the coefficients will be stored in RAM. 

2. The fixed method – it uses pre-calculated filter coefficients. The user can then 

design its filter according to its needs. This solution gives the most flexibility. The 

filter coefficients should be stored in FLASH memory. 

 

By using the dynamic method, the user can choose by adding to the filter a window. The 

window is also automatically generated by the algorithm and any windows from the 

library can be used. 

“Order” Vs “Filter order” 

Note, by using this API, the user must define an order for the re-sampling module. This 

order is NOT the order of the filter order to be used but defines it indirectly. The actual 

filter order used is a multiplication from this order with the interpolation factor: 

<filter order> = <order> * <interpolation factor> 

Normalization 

Normalization of the filter coefficients can only be done in dynamic mode. By doing so, 

the algorithm will make sure the amplitude of a re-sampled signal can never go above 1. 

The resulting signal is in practical case around half the size of the input signal, but this 

depends on the filter used. 

Frequency response 

The frequency response of the re-sampling algorithm is directly related to the filter used. 

To know what should the response look like; an easy way is to look at the frequency 

response of the filter. Note that the order of the filter is the order of the re-sampling 

algorithm multiplied by the interpolation factor. Therefore, at equal re-sampling order, re-

sampling a stream from 32 KHz to 64 KHz will have a worse frequency response than re-

sampling a stream from 32 KHz to 44.1 KHz (because the filter order will be much 

lower).  



Resources 

Memory 

Following is the memory footprint of the algorithm: 

• Algorithm context (includes all the internal data used by the algorithm): 

(sizeof(dsp_resampling_t) + <input buffer size in bytes>) * <number of channels> 

= 

~ (50 + <input buffer size in bytes>) * <number of channels> bytes 

• A buffer to store filter coefficients: 

2 * <order> * <interpolation factor> bytes 

• Code size: 

~ 5 Kbytes 

 

If the fixed method is used: 

RAM ROM 
50 * <# of channels> 

+ <input buffer size in bytes> * <# of channels> 

bytes 

5 Kbytes 

+ 2 * <order> * <interpolation factor> bytes 

 

If the dynamic method is used: 

RAM ROM 
50 * <# of channels> 

+ <input buffer size in bytes> * <# of channels> 

+ 2 * <order> * <interpolation factor> 

bytes 

5 Kbytes 

Cycles 

The number of cycles is related to the re-sampling order and the ratio between the input 

sampling frequency and the output sampling frequency. 

The following graph shows the number of cycles to process one sample amongst different 

frequency re-sampling ratios: 



 

Examples 

Re-sampling algorithm used with a 256-byte input buffer for a stereo audio input stream 

(2 channels). (Fixed method is used with the pre-calculated filter coefficient generated 

with Scilab: windowed FIR filter + Hann window).  

 

Frequency re-sampling from 32 KHz to 44.1 KHz 

Order 6 10 15 20 

Interpolation factor 441 441 441 441 

Filter order 2646 4410 6615 8820 

RAM (bytes)
 (1)

 612 612 612 612 

ROM (bytes)
 (1)

 10K 14K 18K 23K 

# cycles / samples 
(2)

 141 213 279 340 

0

50

100 

150 

200 

250 

300 

350 

400 

450 

500 

6 10 15 20 30

Re-sampling order 

Cycles 
1.1

1.4

1.5

FSout / FSin 



 
Frequency re-sampling from 32 KHz to 48 KHz 

Order 6 20 60 100 

Interpolation factor 3 3 3 3 

Filter order 18 60 180 300 

RAM (bytes)
 (1)

 612 612  612  612  

ROM (bytes)
 (1)

 5K 5K 6K 6K 

# cycles / samples 
(2)

 149 365 928 1476 



 
Frequency re-sampling from 44.1 KHz to 48 KHz 

Order 6 10 20 30 

Interpolation factor 160 160 160 160 

Filter order 960 1600 3200 4800 

RAM (bytes)
 (1)

 612 612 612 612 

ROM (bytes)
 (1)

 7K 8K 12K 15K 

# cycles / samples 
(2)

 125 182 283 388 



 
(1) The RAM and ROM memory footprints include the code size of the algorithm and its context as well as the 

filter coefficients size. Therefore, if the user chooses to re-sample different frequency rates, only the size of 

the filter coefficients will be added to the count of the memory footprint. See the Memory chapter on page 7

for more details. 
(2)

  The number of cycles is for 1 mono (1 channel) sample. This measurement has been done with IAR for 32-

bit AVR v3.20 using high speed optimization. 
 



Characterization of the algorithm from simulation 

Frequency re-sampling from 32 KHz to 48 KHz (dynamic method) 

Using the DSPLib to auto-generate the filter coefficients using the windowed sinc 

method: 

• Filter characteristics: 

 

 
• Re-sampling algorithm - time domain (input signal is a linear frequency sweep 

from 0 to 16 KHz): 

-3db 



 

 

 

 
 

Frequency re-sampling from 32 KHz to 48 KHz (fixed method) 

Using pre-generated coefficients for the filter (rectangular window): 

• Filter characteristics: 



 

 
Note: The “Order” represents the filter order here. 

 

• Re-sampling algorithm - time domain (input signal is a linear frequency sweep 

from 0 to 16 KHz): 

 

 

-3db 



 

 
 

Frequency re-sampling from 32 KHz to 48 KHz (fixed method + Hann 
window) 

Using pre-generated coefficients for the filter (Hann window): 

• Filter characteristics: 

 



 
Note: The “Order” represents the filter order here. 

 

• Re-sampling algorithm - time domain (input signal is a linear frequency sweep 

from 0 to 16 KHz): 

 

 

 

 

-3db 



Improvements from version 1 to version 2 

 

Re-sampling from 32 KHz to 48 KHz 

 

 

-> Version 1 

 
Input signal 

 (frequency sweep from 0 to 16 KHz) 

 

 
  Version 2 (dynamic method) 

 

Re-sampling from 44.1 KHz to 48 KHz 

 

  
Input signal -> Version 1 



 (frequency sweep from 0 to 20 KHz)  

 
  Version 2 (dynamic method) 

 


